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INTRODUCTION

Unsteady flow simulation (channel routing) models mathematically predict
the changing magnitude, speed, and shape of a water wave as it propagates
through canals, rivers, reservoirs, or estuaries. The water wave can emanate
from precipitation runoff (rainfall or snow-melt), reservoir releases (spill-
way flows or dam—failures), and tides (astronomical and/or wind-generated).

Channel routing has long been of vital concern to man as he has sought
to predict the characteristic features of a water wave in his efforts to
improve the transport of water through man-made or natural channels and to
determine necessary actions to protect life and property from the effects of
flooding. Commencing with 1investigations as early as the 17th century,
mathematical techniques to predict wave propagation have continually been
developed. With the contribution of Saint-Venant (1871), the basic theory for
one-dimensional analysis of water wave propagation was formulated; however,
due to the mathematical complexity of Saint-Venant's theoretical equations,
simplifications were necessary to obtain feasible solutions for the salient
characteristics of the wave. Thereafter, a profusion of simplified routing
methods appeared in the literature. It is only within the last 25 years, with
the advent of high-speed electronic computers, that the complete Saint-Venant
equations could be solved with varying degrees of feasibility.

This paper describes the mathematical formulation and capabilities of a
one-dimensional unsteady flow model, "FLDWAV”, which is an enhancement of
another model "DWOPER™ (Fread, 1978). The latter has been used by the
National Weather Service, Corps of Engineers, and many other governmental
agencies, and private consulting firms, both nationally and internatiomnally.
Although FLDWAV and DWOPER have had limited application to irrigation systems,
FLDWAV has the potential for simulating complex unsteady flow phenomena in
simple or complex networks of irrigation channels having time-dependent flow
and level controls. The FLDWAV Model can provide the necessary information on
flow rates and water levels throughout the irrigation system for either real-
time simulation and decision making or operational planning and design. The
model could also be used to study unusual occurrences such as levee over-
topping and/or failure as well as landslide blockages. It requires the com-
putational resources of a mainframe or minicomputer for best performance
although it can be used on microcomputers.
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The following special features are included in FLDWAV: variable At and
Ax computational intervals; irregular cross-sectional geometry; of f-channel
storage; roughness coefficients which vary with discharge or water surface
elevation, and distance along the channel; capability to generate linearly
interpolated cross sections and roughness coefficients between input cross
sections; automatic computation of initial steady flow and water elevations at
all cross sections along the channel; external boundaries of discharge or
water surface elevation time series (hydrographs), a single-valued or looped
depth-discharge relation (tabular or computed); time dependent lateral inflows
(outflows); internal boundaries which enable the treatment of time dependent
reservoir spillway flows, gate controls; levee failure and/or overtopping; a
special computational technique to provide numerical stability when treating
flows which change from supercritical to subcritical or, conversely, with time
and distance along the channel; and an automatic calibration technique for
determining the variable roughness coefficient by using observed hydrographs
along the channel.

FLDWAV is coded in FORTRAN IV and the computer program is of modular
design with an overall program storage requirement of approximately 256000
bytes. Program array sizes are variable with the size of each array set
internally via the input parameters used to describe the particular unsteady
flow application for which the model is being used. Program output is user
selective and consists of tabular and/or graphical displays.

BASIC ALGORITHM

FLDWAV is based on an implicit finite difference solution of the conser-
vation form of the Saint-Venant equations of unsteady flow. In their conser-
vation form, the equations consist of the conservation of mass equation, i.e.,
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and the conservation of momentum equation, i.e.,
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in which x is distance along the longitudinal axis of the channel, t is time,
Q is discharge, A is active cross-sectional area, Aj is inactive (off-channel

storage) cross-sectional area, q 1s lateral inflow (positive) or outflow



(negative), g is the gravity acceleration constant, h is water surface eleva-
tion, B is wetted top width of cross section, L is the momentum effect of
lateral inflow, S¢ is friction slope computed from Manning's equation, n is

the Manning n, R is the hydraulic radius, Se is the local loss slope, Ke is an
expansion (negative) or contraction (positive) coefficient, W¢ 1is the wind
term, C, 1s non-dimensional wind coefficient, V. is the velocity of the wind

(V,s + if opposing flow and - if aiding the flow) relative to the velocity of
the channel flow, and w is the angle between the wind direction and channel
flow direction.

In an implicit finite difference solution of Egs. (1) and (2), the con-
tinuous x-t solution domain in which solutions of h and Q are sought is repre-
sented by a rectangular net of discrete points as shown in Fig. 1. The net
points (nodes) may be at equal or unequal intervals of At and Ax along the t
and x axes, respectively. Each node is identified by a subscript (i) which
designates the x position and a sv-a2rseript (j) for the time line. A four-
point weighted, implicit difference approximation is used to transform the -
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nonlinear partial differential equations of Saint-Venant into nonlinear alge-
braic equations. The four-point weighted difference approximations similar to
that used by Preissmann (1961) are:
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where K is a dummy parameter representing any variable in the above differen-
tial equations, 6 is a weighting factor varying from 0.5 to 1, i is a sub-
script denoting the sequence number of the cross section or Ax reach, and j is
a superscript denoting the sequence number of the time line in the x-t solu-
tion domain. A O value of 0.5 is known as the "box" scheme while® =1 is the:
"fully implicit™ scheme. To insure unconditional linear numerical stability
and provide good accuracy, O values nearer to 0.5 are recommended (Fread,
1974). Accuracy decreases as O departs from 0.5 and approaches 1.0. This
effect becomes more pronounced as the time step size 1increases. FLDWAV
allows G to be an input parameter. A value of 0.55 to 0.60 is often used to
minimize loss of accuracy while avoiding weak or pseudo instability which
sometimes results when O of 0.5 is used.

Substitution of the finite difference approximations defined by Eqs. (6)-
(8) into Eqs. (1) and (2) for the derivatives and non-derivative terms and
multiplying through by Axi yields the following difference equations:
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where: Ai = 0.5 (Ai + Ai+1) (11)
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Li = - (qv.) (lateral inflow) (20)
Xy
Li = - (q 6/:\)i (bulk lateral outflow) (21)
L1 = - (0.5 q B/K)i (seepage lateral outflow) (22)

The bar (-) above the variables represents the average of the variable
over the reach length (Axi) between cross sections i and i+l. The subscript

(1) associated with g, ;x’ A, B, §f’ Q, §e, ﬁf, Vr’ and Vw represents the
number of the reach (Axi) rather than the cross section (node) number. Node

numbers commence with 1 and terminate with N, while reach numbers commence
with 1 and terminate with (N-1).

Eqs. (9) and (10) are nonlinear with respect to the unknowns h and Q at
the points i and i+l on the j+l time line. All terms associated with the jt
time 1line are known from either the 1initial conditions or previous
computations. The 1initial conditions are values of h and Q at each
computational point (node) along the x—-axis for the first time line (j=1).



Eqs. (9) and (10) are two nonlinear algebraic equations which cannot be
solved in a direct (explicit) manner since there are four unknowns, h and OQ,
at points i and (i+1) on the (j+1) time line and only two equations. However,
if similar equations are formed for each of the (N-1) Ax reaches between the
upstream and downstream boundaries, a total of (2N-2) equations with 2N
unknowns results. (N denotes the total number of computational points or
cross sections.) Then prescribed boundary conditions, one at the upstream
extremity of the channel and one at the downstream extremity, provide the
additional two equations required for the system to be determinate. The
resulting system of 2N nonlinear equations with 2N unknowns 1is solved by the
Newton-Raphson method which was first applied by Amein and Fang (1970) to an
implicit nonlinear formulation of the Saint-Venant equationse.

Newton-Raphson Method. The Newton-Raphson method is a functional
iterative technique to solve a system of nonlinear equations. The technique
is derived from a Taylor series expansion of the nonlinear function in which
all terms of second and higher order are neglected. The resulting algorithm
is:

7 & = - £(x9) (23)
in which Xk is a vector quantity, J' is the Jacobian (a coefficient matrix

made up of the partial derivatives evaluated with Xk values), f(Xk) is the

nonlinear equation evaluated with xk values, and AX is a vector containing the
2N unknowns. Eq. (23) represents a system of equations in which the unknown
vector AX is linear. Solution of Eq. (23) for the unknown AX by an appro-
priate matrix inversion technique such as Gauss elimination. The AX vector
actually represents the difference between an initial estimate of the true
solution and an improved estimate, 1i.e.,

X = XL - (24)
in which k is the number of iteratiom, X° 1s the initial estimate (guess) and
Xk+l is the improved estimate. Convergence of the iterative solution is

attained in usually one or two iterations when the AX vector containing the
j+1) j+l hj+l
i+1 i i+l
than convergence criteria which are specified for each application of FLDWAV.
Typical values are 0.0l ft. for convergence of water elevation (eh)while the

unknown discharges (Qi-"1 »Q and water elevations (h ) becomes less

convergence for the dischargé is specified in ft3/sec according to the
following relation:

eQ-ehBV (25)
in which B and V are the representative channel width and velocity,

respectively.

K The convergence process depends on a good first estimate for the vector
X", A reasonably accurate initial condition of the discharges and water



elevations at t = 0 provides the first Xk. Thereafter, Xk first estimate

values can be obtained using extrapolated values from solutions at previous
time steps according to the following algorithm:

= xd7l s xi7t - 172y o acd/acdt (26)

where ACJ and AtJ-l are values of time steps between the time lines corres-

ponding to the solution vectors, Xj and Xj'l, respectively. The weighting
factor a' can be specified over the range of zero to unity.

The Jacobian matrix, J'(Xk), is composed of elements (az k) located along
9’

the main-diagonal with two elements in rows 1 and 2N which represent the
upstream and downstream external boundaries, respectively; and all other rows
have four elements which represent the partial derivatives of Egqs. (9) and
1, et Qi:i, hiT1). Each adja-
cent pair of rows represent the application of Eqs. (9) and (10) to each Ax
reach along the channel proceeding from . the upstream to the downstream
boundary.

(10) with respect to the four unknowns (Q

Thus, the Newton-Raphson method generates a system of 2N x 2N linear
equations. The Jacobian or coefficient matrix of the system is composed of

the partial derivative expressions evaluated at the first estimate, Xk. The
right-hand side of Eq. (23) is the residual, a vector whose values are

obtained by evaluating Eqs. (9) and (10) using the Xk estimate values for the

unknown discharges and water surface elevations. Solution of the 1linear
system described by Eq. (23) provides corrections to the first trial
(estimated) values of the unknowns.

Matrix Solution. An efficient matrix solution technique is critical to
the feasibility of an implicit model. Eq. (23) is solved by a special modi-
fication of the Gauss elimination method for solving a system of linear
equations. Using matrix notation, Eq. (23) takes the following form:

[A] X =R (27)

in which [A] = the coefficient matrix with elements a, 1 and X, R are column
’
vectors having components Xy and Ty respectively. The coefficient matrix is

banded with most of the elements being zero except for four elements in each
row along the main-diagonal of the matrix. An efficient solution technique
was developed by Fread (1971) in which (1) the computations do not involve any
of the many zero elements, thus reducing the required number of operations

(addition, subtraction, division, multiplication) from (16/3N3 + 8N% + 14/3N)
to (38N - 19); and (2) stores only the non-zero elements, thus reducing the
storage required for the [A] matrix from 2N x 2N to 2N x 4, where N is the
total number of cross sections along the channel. The compaction of the
original matrix into 2N x 4 size causes the subscript k in Eqs. (14-87) -



(14-94) not to increment for each successive s reach, i.e., k=1,2,3,4, for
all £ rows.

Eq. (27) may be efficiently solved by the following compact, penta=
diagonal, modified Gauss elimination algorithm. The computations to eliminate
the elements below the main-diagonal proceed according to 2 = 2,456 seees 2N=2
and are:

a0 = "8, /3 kel 211,042 T 3,2 (28)
Ty= "2y /a8 kw1 Te-1 T Ty (29)
3pb1,2 = 21,173 0-1,k+1 2a-1,k42 T 21,2 (30)
Torl = 241,172 0-1,k'+1 To-1 T a1 (3L
301,33 T 21,2730,2 20,3 ¥ 2 441,3 (32)
Boe1,6 " T241,2/%0,2 20,4 T 21,4 (33)
Torl = "2041,2/30,2 Ty * Tl (34)

in which k' = 0 when £ = 2 and k' =2 when £ > 2. The xz components of the

solution vector X are obtained through a back-substitution procedure com—
mencing at 2 = 2N and proceeding sequentially to 2 = le Thus,

on" (“25x,3/228-1,3 Tan-1 ¥ Tow)/
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X2'= (rz— az,k,+2 x2+1)/al’k'+1 eee d = 2N‘1,2N‘3,-0.3,1 (36)
X = (1’.‘ - '002 = ZN—Z,ZN“‘&,--.A,z (37)

) e 2a,4 Ter2” 24,3 X102, 2

in which k' = 2 when 2 > 1 and k' = 0 when £ = 1.

Enhancement of Computational Algorithm. FLDWAV contains an automatic
procedure which increases the robust nature of the four-point, nonlinear
implicit finite difference algorithm. This enhancement 1is quite useful when
treating rapidly rising hydrographs in channels where the cross sections have
large variations in the vertical and/or along the x—axis. This situation may
cause computational problems which are manifested by non-convergence in the




Newton-Raphson iteration or by erroneously low computed depths at the leading
edge of steep-fronted waves. When either of these manifestations are sensed.
an automatic procedure consisting of two parts is implemented.

The first reduces the current time step (At) by a factor of 1/2 anc
repeats the computations. If the same problem persists, At is again halvec
and the computations repeated. This continues until a successful solution {:
obtained or the time step has been reduced to 1/16 of the original size. If :
successful solution is obtained, the computational process proceeds to the
next time level using the original At. If the solution using At/16 is unsuc-
cessful, the O weighting factor is increased by 0.l and a time step of At/2 i:
used. Upon achieving a successful solution, 0 and the time step are restorec
to their original values. Unsuccessful solutions are treated by increasing !
and repeating the computation until @ = 1.0 whereupon the automatic procedure
terminates and the solution with = 1. and At/2 is used to advance the solu-
tion forward in time now using the original @ and At values. Often, computa:
tional problems can be overcome via one or two reductions in the time step.

EXTERNAL BOUNDARIES AND INITIAL CONDITIONS

External boundaries which consist of the upstream and downstream extremi.
ties of the channel must be specified in order to obtain solutions to th
Saint-Venant equations. In fact, in most unsteady flow applications, th
unsteady disturbance 1is introduced to the channel at one or both of th
external boundaries.

Upstream Boundary. Either a specified discharge or water elevation tim
series (hydrographs) can be used as the upstream boundary in FLDWAV, If .
discharge hydrograph Q(t) is used, the boundary equation 1is:

B, =a™ - ae) =0 (38
If a water elevation time series h(t) is used, the boundary equation is:
B, = hjl” - h(t) = 0 (39

The hydrographs used as upstream boundary conditions should not b
affected by the flow conditions downstream of the upstream boundary.

Downstream Boundary. Specified discharge or water elevation time serie
may be used as the downstream boundary condition. For a discharge hydrograp
Q'(t), the boundary equation is:

ﬁﬁl- qgl“ - Q'(t) =0 (40

If a water elevation time series h'(t) such as an observed or predicted tid
or lake level, the boundary equation is:

A

= j+l - ' =

By = by h'(t) =0 (41
Another frequently used downstream boundary is a relation between dis

charge and depth or water elevation such as a single-valued rating curv

expressed in tabular (piece-wise linear) form consisting of points (Qk’ hk)



Any discharge Q' can be obtained from the table for any associated water

elevation (hNJ+1) at the downstream boundary by the following 1linear
interpolation formula:

v oo - j+1 _ _
Q" = Q *+ (9, - Q) (hy h )/ (hy =y (42)
In this case, the downstream boundary equation is:

EN = q%*l -qQ =0 (43)

The downstream boundary can be a loop-rating curve based on the Manning
equation for normal flow. The loop 1s produced by using the water surface
slope rather than the channel bottom slope. In this case, the downstream
boundary equation 1is:

- +1 _
By = Q; -QN =0 (44)
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The downstream boundary can be a critical flow section; the downstream
boundary equation is:

-~

By = oi*l -QC =0 (46)
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where: QCc = (/g/B A3/2)N

The flow at the downstream boundary should not be affected by flow condi-
tions further downstream. Of course, there are always some minor influences
on the flow due to the presence of cross-sectional irregularities downstream
of the chosen boundary location; however, these usually can be neglected
unless the irregularity is very pronounced such as to cause significant back-
water or drawdown effects. Reservoirs or major tributaries located below the
downstream boundary which cause backwater effects at the chosen boundary loca-
tion should be avoided. When this situation is unavoidable, the reach of
channel for which the Saint-Venant equations are being used should be extended
on downstream to a location below where the tributary enters or to the dam in
the case of the reservoir. Sometimes the routing reach may be shortened and
the downstream boundary shifted upstream to a point where backwater effects
are negligible.

(47)

Initial Conditions. Initial conditions of water surface elevation (h)
and discharge (Q) must be specified at time t = O to obtain solutions of the
Saint-Venant equations. Initial conditions may be specified for FLDWAV by any
of the following: (1) from observations at gaging stations with interpolated
values for intermediate cross sections; these must be sufficiently accurate to
result in convergence of the Newton-Raphson solution of the Saint-Venant
finite difference equations (the errors dampen-out after several time steps);




(2) computed values from a previous unsteady flow solution (this is frequently
used in day-to-day flood forecasting); and 3) computed values from a steady
flow backwater solution.

In the case of steady flow, the discharge at all cross sections can be
determined by:

Qi+1 = Qi + qi Axi eees 1 = 1,2,3, eee N-1 (48)

in which Q1 is the assumed steady flow at the upstream boundary at time t=0,
and Ei is the known average lateral inflow (outflow) along each Ax reach at
t=0. The water surface elevations (hi) are computed according to the

following steady flow simplification of the momentum Eq. (14-62):

(Q%/A),,, - (Q¥A), +gh (hy -h + & 5. ) =0 (49)

i+l i+l i 1
in which Ki and §f are defined by Eqs. (11) and (13), respectively.
The computations groceed in the upstream direction (i = N=-1, ... 3,2,1) for
subcritical flow (they proceed in the downstream direction for supercritic?l
flow). The starting water surface elevation (hN) can be specified or obtained

from the appropriate downstream boundary condition for a discharge of Oy Eq.

(49) can be solved by the Newton-Raphson method as applied to a single
nonlinear equation. In this case, if Eqs. (23) and (24) are combined, the
following recursive relationship can be written in scalar form:

T T 2 7 T L (50)

in which x represents the unknown (hi)5 k is the number of iteratioms, f(xk)
is Eq. (49) evaluated with the trial solution xk, and f'(xk) is the derivative
of Eq. (49) with respect to the unknown (hi) and evaluated at xk.

INTERNAL BOUNDARIES

There may be locations along the channel(s) at which structures control
the flow or level such as a dam, bridge, or waterfall (short rapids) where the
Saint-Venant equations are not applicable. At these locations, the flow is
often rapidly varied rather than gradually varied as necessary for the appli-
cability of the Saint-Venant equations. Empirical water elevation-discharge
relations such as weir-flow can be utilized for simulating rapidly varying
flow. In FLDWAV, unsteady flows are routed along the channel including points
of rapidly varying flow by utilizing internal boundaries. At internal bounda-
ries, cross sections are specified for the upstream and downstream extremities
of the section of channel where rapidly varying flow occurs. The Ax reach
length between the two cross sections can be any appropriate value from zero
to the actual measured distance. Since, as with any other Ax reach, two equa-
tions (the Saint-Venant equations) are required, the internal boundary Ax
reach requires two equations. The second of the required equations represents
the conservation of mass with negligible time-dependent storage, i.e.,
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Blp = QG -~ Qg = O (31)

The first of the two required equations 1is an empirical rapidly varied
flow relation. Several examples of rapidly varied flow internal boundary
equations follow.

Critical Flow. If the internal boundary is used to represent critical
flow, the following equation is used in conjunction with Eq. (51):

j+1

511 = Qi+1 - & (A3/2/31/2)1 =0 (52)

Rating Curve. A rating curve as described previously in the section,
"External Boundaries and Initial Conditions”, can be used as an internal
boundary in which the downstream flow is assumed to have negligible effect on

the flow passing the iaternal boundary section. The internal boundary
equation 1is:

A _ +l_'=

B, =t -0 =0 (53)

in which Q' is defined by Eq. (42).

Dam. At a dam, the internal boundary can represent any combination of
flow such as spillway flow (uncontrolled overflow, fixed gate, time-dependent
gate), crest overflow, constant (head-independent) flow, or breach flow due to

a time-dependent failure of the dam. The general equation for flow at a dam
is:

A '+
B, =" -0, =0 (54)
in which Qg is the spillway flow defined as follows:

Q. =K. 0 _+ Qg + Ko Qg * 0. (55)

S SSs SS cs t
st = CS LS (h{.’-l - hS )3/2 (56)
Qg = 7 o A (md*h - hg)l/z (57)
o =c, L, (M- hd)axz (58)
Ry, = 1. - 27.8 (b - 0.67)° ces h__ > 0.67 (59)



j+1 j+l_ '
s = (hi+1 - hs)/(hi hS) (60)

3
cs = 1, - 27 .8 (hrc - 0067) eee hrC > 0067 (61)

j+1 j+1
b, = (b -h)/(h - h

i+l 1 ) (62)

in which Rgg and K.g are submergence correction factors for the spillway and

dam crest, respectively; c¢ and cq are discharge coefficients for the

s’ cg’
spillway, gate(s) and dam crest, respectively; Lg is the length of the spill-
way; Ag is the area of the gate opening; Ly is the length of the dam crest

after subtracting Lg; h. is the elevation of the spillway crest; h_ is the

s g
elevation of the center of the gate(s); and Q. is a constant, head-independent

outflow. Also, time-dependent gate parameters (cg and Ag) may be specified

via tabular, piece-wise linear, values and associated times (t).

Water Level Control. A channel may have a device which either manually
or automatically causes the level immediately upstream to continually remain
at the target elevation for a large range of flows. Although the actual
changes in the level controller are not known, the maintenance of a constant
water elevation provides the internal boundary equation, i.e.,

Brp= h, =0 (63)

in which h, is the target pool elevation upstream of the level control device.

Gated Flow Control. Several locations along a channel may have movable
sluice gates whose settings are time-dependent to provide pre-determined flow
rates to exist at such locations. An expression for the flow rate is used an
internal boundary, i.e.,

oS 5 SRR L5 i*l _ Y
B, = Q) e A Zg (] - 2= 0 (64)

where hy 1is the gate sill elevation if the flow is unaffected by the

downstream water elevation such as gate structures where the downstream
channel bottom abruptly drops down. If the channel bottom is more or less
continuous through the gate, hd is downstream water elevation, i.e.,

h. = hj+1

d i+l ° (65)



SUPERCRITICAL OR MIXED FLOW

In the preceding presentation, it was assumed the flow is always sub-
critical at each cross section along the routing reach. When the flow becomes
supercritical, it requires special treatment of the external boundaries.
Supercritical flow may occur all along a channel reach, or it may occur at
intermittent locations along the routing reach. The former 1is easier to
treat, while the latter ("mixed flow") is more difficult. The flow may be
mixed in both time and location along the channel. The locations of each type
of flow (supercritical or subcritical) must be determined at each time step,
and various types of boundary conditions must be used with each partial reach
of supercritical or subcritical flow.

Supercritical flow occurs when the Froude number (Fi) is greater than
that for critical flow, i.e.,

F, = Q/(v&8/8 Ai3/2) > F, . (66)
in which F, is the Froude number for critical flow. A value of 1.0 is used
for Fc, although this may be slightly changed to account for numerical
effects. Subcritical flow occurs when Fy < Fc, and critical flow occurs when
Fi = Fc. A priori estimation of the occurrence of supercritical flow is
conveniently determined through use of the channel bottom slope, i.e., super-
critical flow occurs 1if So > Sc’ where Sc (the critical slope) may be

expressed as follows:
S, = gn?/[2.21 (A/B)1/3] (67)

Supercritical Flow. If the entire routing reach is supercritical flow,
the downstream boundary condition is no longer required since flow disturb-
ances cannot propagate upstream; hence, the downstream boundary is superflu-
ous. However, in order to have a determinate system of implicit difference
equations, there must bLe 2N equations to match the 2N unknowns. The
additional equation needed to make a determinate system is an additional
upstream boundary equation in the form of a depth-discharge relation, i.e.,

B, = Q{ -Qs =0 (68)
2
573 3% pd _ Y
where: Qs = (1'4862?3 ) ( IAX 2) (69)



Mixed Flow. When the flow changes with either time or distance along the
routing reach from supercritical to subcritical or, conversely, the flow 1is
described as "mixed". During each time step, subreaches are delineated where
supercritical or subcritical flow exists by computing the Froude number at
each cross section and grouping consecutive Ax; reaches into either sub-

critical or supercritical subreaches. Then, the Saint-Venant equations are
applied and solutions obtained for each subreach, commencing with the most
upstream subreach and progressing downstream until each subreach has beer
solved. Appropriate external boundary equations are used for each subreach.

Where the flow changes from subcritical to supercritical, the downstrearn
boundary for the subcritical subreach is the critical flow Eq. (46). The twc
upstream boundary equations for the supercritical subreach are:

A -+l

13n=QJl -Q' =0 (70)
3 = pdtl _ =

Bjp=h -h =0 (71

in which Q' is the computed flow at the downstream boundary of subcritical
subreach, Q{+1 is the flow at the same cross section which is now the first
section of the supercritical subreach, hc is the critical water surface
elevation computed at the downstream boundary of the subcritical subreach,
and h{+1 is the water elevation of the first section of the supercritical

subreach. The supercritical subreach does not require a downstream boundar
equation.

Where the flow changes from supercritical to subcritical, the upstrean
boundary equation for the suberitical subreach is:

By, = Q{+1 -Q'' =0 (72;

in which Q'' is the computed flow at the last cross section of the supercriti-
cal reach and Q{+l is the flow at the first cross section of the subcritical

subreach. The downstream boundary for the subcritical subreach would be Eq.
(46) if another supercritical subreach exists below the subcritical subreact
or the appropriate condition described by Eqs. (40) - (46) if the subcritical
subreach is the last subreach in the routing reach. The depth of flow at the
first section of the subcritical subreach 1is determined by the downstrean
boundary condition and the Saint-Venant equations applied to the subcritical
subreach. A hydraulic jump occurs between the last section of the supercriti-
cal subreach and the first section of subcritical subreach, although an equa-
tion for such is not directly used. To account for the possible movement of
the hydraulic jump, the following procedure is utilized before advancing t«
the next time step: (1) the water elevation at the first section of the



subcritical subreach is extrapolated to several upstream cross sections near
the downstream end of the supercritical subreach; (2) the sequent depths
(water elevations) of the same sections 1in the supercritical reach are
computed; and (3) the sequent elevations are compared with the extrapolated
elevations, and the first section of the subcritical subreach is determined as
that section nearest the intersection of two elevations.

CHANNEL NETWORKS

The implicit formulation of the Saint-Venant equations 1s well-suited
from the standpoint of accuracy for simulating unsteady flows in a network of
channels since the response of the system, as a whole, is determined within a
certain convergence criteria for each time step. However, a network of chan-
nels presents complications in achieving computational efficiency when using
the implicit formulation. Equations representing the conservation of mass and
momentum at the confluence of two channels produce a Jacobian matrix in the
Newton-Raphson method with elements which are not contained within the narrow
band along the main-diagonal of the matrix. The column location of the ele-
ments within the Jacobian depends on the sequence numbers of the adjacent
cross sections at the confluence. The generation of such "off-diagonal” ele-
ments produces a "sparse” matrix containing relatively few non-zero elements.
Unless special matrix solution techniques are used for the sparse matrix, the
computation time required to solve the matrix by conventional matrix solution
techniques 1is so great as to make the implicit method infeasible. The same
situation also occurs for the linearized implicit methods which must also
solve a system of linear equations similar to the Jacobian. One of two algo-
rithms can be selected in FLDWAV for an efficient computational treatment of
channel networks. '

The first, called the "relaxation” algorithm, is restricted to a den-
dritic (tree-type) network of channels in which the main channel has any
number of tributary channels joining with it. Sometimes, dendritic systems
with second-order tributaries (tributaries of tributaries) can be accommodated
in the relaxation technique by reordering the dendritic system, i.e., select-
ing another branch of the system as the main channel. In the relaxation algo-
rithm, no sparse matrix is generated; the Jacobian is always banded as it 1s
for a single channel reach.

The second, called the “network” algorithm, can be used on almost any
natural system of channels (dendritic systems having any order of tributaries;
bifurcating channels such as those associated with islands, deltas, flow by-
passes between parallel channels; and tributaries joining bifurcated chan-
nels). The network algorithm produces a sparse matrix which 1is solved by a
special matrix technique which 1s described later. The relaxation algorithm
1s slightly more efficient than the network algorithm, but the former does not
have the versatility of the latter.

Relaxation Algorithm. During a time step, the relaxation algorithm
solves the Saint-Venant equations first for the main channel and then sepa-
rately for each tributary of the first-order dendritic network. The tributary
flow at each confluence with the main channel is treated as lateral flow (q)
which 1is first estimated when solving Saint-Venant equations for the main
channel. Each tributary flow depends on 1its upstream boundary condition,




lateral inflows along its reach, and the water surface elevation at the con-
fluence (downstream boundary for the tributary) which is obtained during the
simulation of the main channel. Due to the interdependence of the flows in
the main channel and its tributaries, the following iterative or relaxation
algorithm (Fread, 1973) 1is used:

q* = aq + (1 - @ g** (73)

in which ¢ is a weighting factor (0 < a < 1), q is the computed tributary flow
at each confluence, q** is the previous estimate of q, and q* is the new esti-
mate of q. Convergence is attained when q is sufficiently close to q**, i.e.,
lq - q**| < Qe Usually, one or two iterations is sufficient; however, the

weighting factor has an important influence on the algorithm's efficiency.
Optimal values of a can reduce the iterations by as much as half. A priori
selection of o is difficult since it varies with each dendritic system. Good
first approximations for « are in the range, 0.6 < a < 0.8.

The acute angle (mt) that the tributary makes with the main channel is a

specified parameter. This enables the inclusion of the momentum effect of the
tributary inflow via the term (-qvx) of Eqe (20) as used in the momentum

equation, Eq. (2). The velocity of the tributary inflow is given by:

v = (Q/A)N cos (74)

in which N denotes the last cross section of the tributary.

Network Algorithm. The network algorithm 1s used when the channel
network consists of any or all of the following: (1) second and higher-order
tributaries; (2) bifurcations around islands with either zero, one, or two
bypasses through the island; (3) dendritic branches joining any portion of the
bifurcated branches; and (4) a dendritic network associated with river delta
formations. The algorithm is based on the treatment of the channel junctions
(confluences, bifurcations) as internal boundary conditions using the
following three equations:

ﬁu = Qi+1 + Qi*,’l - Qifil - s/t =0 (75)
512 - 2 (hil+1 - hi*,‘ilj + (QZ/AZ)i+1 -1 (QZ/AZ)iTil =0 (76)
By = 28 (b)) - w7y )+ (%a2 It -1 azly, = o an
where: %- Axi/(SAtj) B (!, hi*,’l + hi':'}_l -nl - M, - hji,H) (78)
i' =4 +m+1 (79)
B = Bji + Bi,+1 + Bji, cos w, (80)



'1‘=-1+Cm-c-cf (81)

c_= (0.1 +0.83 od./al,,,) (/%) (82)
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Cp =28 & (83)

i

in which D is the average depth in the junction, n is the Manning n for the

junction, w, is the acute angle between the upstream reach and the branch,

p is an exponent taken as unity, and m is the total number of Ax reaches
located upstream (downstream) along the branching channel. The parameters Cg

and Cg are related to the head loss due to mixing (Lin and Soong, 1979) and

friction effects, respectively. They can be specified as zero values in
FLDWAV.

The rows in the matrix pertaining to the derivatives of Egqs. (75) - (77)
are chosen so as to minimize the number of off-diagonal elements 1in the
Jacobian and to minimize the creation of new off-diagonal elements during the
elimination phase of the matrix solution. Also, the way in which the cross
sections are assigned sequential numbers within the channel network is most
important in effecting the desired minimization. The numbering scheme is as
follows: numbers run consecutively in the downstream direction until a
dendritic-type junction is reached; then the most upstream section of the
dendritic branch is given the next consecutive number and the numbers increase
in the downstream direction along this branch until another junction {is
reached; then the most upstream section of that dendritic branch is numbered
and the numbers increase in the downstream direction along that branch until a
new junction 1is reached; this is repeated until all sections have been aum-
bered, including the first cross section of the branch of the very first
dendritic-type junction; then the numbers continue to increase along the
downstream branch of this junction. Bifurcations are numbered in a similar
manner.

Computational efficiency 1is achieved by use of a specially developed
matrix solution technique of the Gauss elimination type which operates on only
non-zero elements in the matrix through use of a specified code number for
each cross section in the network of channels. The specified code number is
as follows: (1) regular cross section, (2) upstream boundary, (3) downstream
boundary, (4) dendritic-type junction, (5) dendritic-type junction emanating
from a bifurcated channel branch, (6) upstream junction of a bifurcation
around an island, (7) downstream junction of a bifurcation around an island,
(8) bifurcation-type junction emanating from another bhifurcated channel and
joining with a third bifurcated channel, and (9) bifurcation-type junction
emanating from a bifurcated channel and joining into the other branch of the
bifurcated channel.



Three subroutines in the FLDWAV program accomplish the special treatment
of channel networks. The first determines the appropriate row and column
aumbers of the derivative elements in the Jacobian, the second evaluates the
derivatives, and the third solves the matrix. The Jacobian is a 2N x 2N
matrix. The number of operations (addition, subtraction, multiplication,
division) required to solve the matrix is approximately (102 + 46J)N, where J
is the total number of junctions. This is compared with (95N-48) operations
for the relaxation algorithm, (38N-19) for a single channel using Eqs. (28) -
(36), and (16/3N3%8NZ+14/3N) for a standard Gauss elimination method for
solving a 2N x 2N matrix. Generally, the simulation of a channel network
requires about one to two times as much computational effort as a single
channel when each have N cross sections.

LEVEE EFFECTS

Flows which overtop a levee located along either side or both sides of a
channel may be simulated in FLDWAV, since any number of Ax reaches may bypass
flow via a broadcrested weir-flow equation to another channel which represents
the floodplain (beyond the levee). If the system of channels including
floodplain channels is treated by the relaxation technique, the floodplain
channel may either directly connect back into the channel at some downstream
location, or it may be disconnected as in the case of the floodplain within a
ringed levee where the flow is ponded with no exit. The hydraulic connection
may be either a natural confluence or a flap-gated gravity drainage pipe. The
flow in the floodplain can affect the overtopping levee flows via a submer-

gence correction factor Kze similar to that used at internal boundaries of

dams. The flow may also pass from the channel to the floodplain through a
time-dependent crevasse (breach) in the levee using a breach-flow equation
similar to that used at internal boundaries of breached dams (Fread, 1980).

The overtopping and/or breach flow is routed through the floodplain which
is considered to be a tributary of the channel along which the levee is
located. The tributary (floodplain) channel must have a fictitious low-flow
channel in which a small steady flow occurs at all times before the lateral
inflow from the overtopped (breached) levee enters. The low flow which is
specified via the upstream boundary condition for the tributary is necessary
so that the Saint-Venant equations applied to the tributary can be continu-
ously solved during the simulation; however, at the hydraulic connection with
the channel, the fictitious low flow is not added to the channel flow unor is
it included in the flow that ponds within a ringed levee. The floodplain may
also be modeled as a reservoir using only Eq. (1) in which case no low flow
condition need be considered.

Depending on the relative elevations in the channel and floodplain
(tributary), the overtopping levee flow can reverse its direction and flow
from the floodplain back into the channel. Each Axy reach for the channel has

a corresponding & reach along the floodplain channel. Each axy reach has a
submergence correction factor (Kze)’ a broadcrested weir flow coefficient
(Cze)’ and a mean elevation (hZe) of the top of the levee. The effect of the
levee flow is achieved by considering it to be lateral inflow or outflow (q)



in Eqs. (1) and (2). When routing the flow in the channel, if the flow over-
tops the levee and enters the floodplain, it 1s considered to be bulk lateral
outflow. When routing the flow in the floodplain, the levee overtopping flow
is considered to be lateral inflow. In either case, the overtopping flow is
computed as follows:

- 3/2 °
ey 8 Myl ey ey
ehere: S = - B/|h - f] (85)
h = hi eee hi > ht (86)
m
h = ht eece hi < ht (87)
m m
m m
h = hi eeoe hi < ht (89)
m
= . j+1 j+1
hy = 0.5 (hy " + by, ) (90)
8 =o0.5 (0t ndt) (91)
t t t
m m m+1
Kzei = ] eee Y < 0067 (92)
Kze = 10 - 27.8 (Y - 0.67)3 see Y > 0067 (93)
i
y=(®-n, )/(b-n,]) (94)

i i

in which Sg determines the appropriate sign (- for outflow, + for inflow), ﬁi

is the average water elevation along the Axy reach, ht is the average water

m

elevation along the same Ax reach of the floodplain. Of course, the lateral
flow may be zero when the water elevation in either channel does not overtop
the levee or when the elevations are exactly the same, i.e.,

=0 eee h < h , A <h (95)

=0 eee h = H (96)



CROSS SECTIONS

That portion of the channel cross section in which flow occurs is termed
active. In FLDWAV, the active flow cross sections may be of regular or
irregular geometrical shape. Each cross section 1is specified as tabular
values of channel width and elevation, which together constitute a piece-wise
linear relationship. Experience has shown that, in almost all instances, the
cross section may be sufficiently described with approximately eight or less
sets of widths and associated elevations. The total cross-sectional area
below each of the widths is initially computed within the model. During the
solution of the unsteady flow equations, any areas or widths associated with a
particular water surface elevation are linearly interpolated from the piece-
wise linear relationships of width and elevation which were specified or the
area-elevation sets initially generated within the model.

Cross—-sections at gaging station locations are generally used as computa-
tional points in the x-t plane. Cross sections are also specified at points
along the channel where significant cross-sectional changes occur or at points
where major flows enter or exit. Typically, cross sections are spaced farther
apart for large natural channels than for small channels, since the degree of
variation in the cross-sectional characteristics 1is 1less for the 1larger
channels. Spacing can range from a few hundred feet to a few miles.

CHANNEL FRICTION

The Manning n is used to describe the resistance of flow due to channel
roughness caused by bed forms, bank vegetation, obstructions, bend effects,
and eddy losses. The Manning n is defined for each Ax reach as a specified
function of water elevation or discharge according to a tabular (piece-wise
linear) relation between n and the independent variable (h or Q). Linear
interpolation 1is used in FLDWAV to obtain n for values of h or Q intermediate
to the tabular values.

LATERAL INFLOWS

FLDWAV 1incorporates small tributary inflows or overland flow via the
lateral inflow term (q) in Eqs. (1) and (2). These are considered independent
of flows occurring in the river to which they are added. They are specified
as a time series of flows with constant or variable time intervals. They can
be specified for any Ax reach along the river as the sum of all lateral
inflows within the Ax reach.  Outflows may be simulated by assigning a
negative sign to the specified flows. Linear interpolation 1is used for flows
at times other than the specified intervalse.

MODEL CALIBRATION (AUTOMATIC)

Calibration is the process by which values of model parameters are
adjusted until results of simulations correspond to measured (observed) flow
conditions. A critical task in the calibration of dynamic wave models such as
FLDWAV {s the determination of the Manning n which often varies with discharge
or stage, and with distance along the channel. Calibration may be a manual
trial-and-error process; however, FLDWAV has an option to automatically deter-
mine the optimum Manning n which will minimize the difference between computed



and observed hydrographs via a highly efficient optimization technique (Fread
and Smith, 1978). The technique can be applied to a single reach of channel
or any dendritic system which can be simulated with the relaxation method.
The Manning n or conveyance factor (Kc) may be constant or have a piece-wise

linear variation with either discharge or water elevation for each reach of
the channel bounded by gaging stations from which observed water elevation
hydrographs are available.

In the automatic calibration technique optimum Manning n values are
sequentially determined for each reach bounded by gaging stations, commencing
with the most upstream reach and progressing reach-by-reach in the downstream
direction. Dendritic river systems are decomposed into a series of single
reaches connected by appropriate external boundary conditions. Tributaries
are calibrated before the main-stem channel and their flows are added to the
main stem as lateral inflows. An observed discharge hydrograph is specified
at the upstream boundary of each channel, while an observed water elevation
hydrograph at the dowastream gaging station of each reach 1s used as the
downstream boundary condition. The computed water elevation hydrograph at the
upstream boundary 1is tested against the observed hydrograph at that point.
Statistics of bias (¢j) and root-mean-square (RMS) error are computed for

j=1,2,3, ... J ranges of discharge or water elevation so that the Manning n or
K, can be calibrated as a function of discharge or stage. For each range of
discharge, an improved estimate of the optimum Manning n (n§+l) is obtained
via a modified Newton-Raphson iterative method, i.e.,

k+l | Kk # (0 =)
n =n, - j j j eee k 3 2;j = 1,2,..0.-] (97)
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in which the k superscript denotes the number of iterations and °j is the bias

for the jth range. Eq. (97) can be applied only for the second and successive
iterations; therefore, the first iteration is made using the following
estimator:

n‘j‘“ = n‘Jf (1.0 = 0.01 ¢‘;/|¢§|) cee k= 135 = 1,2,0000] (98)

in which a small percentage change in the Manning n is made 1in the correct
direction as determined by the term (‘¢§/|€;I)- The convergence properties of

Eqe (97) are quadratic with convergence usually obtained within three to four
iterations. Improved Manning n values obtained via Eq. (97) are used and the
cycle repeated until a minimum RMS error for the reach is found. Then, the
discharges computed at the downstream boundary using the optimum Manning n are
stored internally and specified as the upstream boundary condition for the
next downstream reach.

Computational requirements for the calibration technique are less than
twice that required for an application of FLDWAV to the same channel without
the calibration option utilized.



COMPUTATIONAL PROPERTIES

The computational properties of the 4-point implicit solution of the Saint-
Venant equations was reported by Fread (1974). Numerical Stability was found
to depend primarily on the O weighting factor of Eqs. (6)-(8). A generalized
stability relationship was found for the 4-point implicit method applied to
the following simplified forms of Eqs. (1) and (2) including linear friction:

sh A
3 TP =0 (99)
v sh _
T e T =0 (100)
2gV
in which k = °_ (101)
cZDo

h is the water surface elevation, C is the Chezy friction coefficient, and D,
and v, are initial values of hydraulic depth and velocity, respectively. An

expression for stability (in the sense of the von Neumann conjecture that
linear operators with variable coefficients are stable if all their localized
operators in which the coefficients are taken constant are stable) is given by
the following expression:

/2

1+ (20-2)2a + (0~ l)b]l
L
1+ 40%2a + 0b

Al = (102)

in which a = gDo(At/Ax)2 tan? (wax/L); b = kAt; and L = wavelength = wave

celerity x durationm. If IAI < 1, independent of the values of Ax and

At, the errors due to truncation and round-off will not grow with time, and
the difference equations are unconditionally linearly stable. This is the
case when 0.5 < O < 1, although only weakly stable (i.e., IAI = 1) when 0 =
0.5 and k approaches zero. Accuracy of the weighted 4-pt. scheme depends on
the selection of At , i.e.,

At < 0.11 ¢ 2 Tp//F; (103)
1/2
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where: Z = { 1 £
462 ¢2 - (20-2)2

(104)

in which Tp is the time of rise of the flood wave in hours, ¢ is the wave

celerity 1in ft/sec, e is the permissible error ratio, 0.90 < ¢ < 0.99, and At
is the time step in hours.

The required computational time using an IBM 360/195 mainframe computer
varies from about 0.001 to 0.005 sec per Ax per At depending on the complexity
of the system of channels and the extent of nonlinearity of the water wave and
channel characteristicse.



SUMMARY AND CONCLUSIONS

Unsteady flow simulation models such as the National Weather Service's
DWOPER and its recent enhancement FLDWAV have been developed for application
to river-reservoir-estuarial systems. However, they have the potential for
both real-time simulation and/or operational planning and design of irrigatiomn
systems. The mathematical and hydraulic aspects of FLDWAV have been described
herein. The basis for the model is the one-dimensional equations of unsteady
flow (Saint-Venant equations) which are two nonlinear partial differential
equations. These are solved by an implicit finite difference solution
technique using a weighted 4-point scheme. The resulting finite difference
equations are nonlinear and are solved simultaneously for all points within
the system of channels. An iterative technique (Newton-Raphson) along with
special matrix solution techniques based on Gaussian elimination enable
efficient solutions to be obtained. Special flow and level controls within
the system of channels can be simulated via their inclusion as internal
boundary conditions. The system of channels can range in complexity from a
single channel to a network of channels. Levee overtopping/failure and
landslide blockages could be simulated for operational planning purposes.

REFERENCES

Amein, M. and Fang, C.S. (1970). 'Implicit flood routing 1in natural
channels', J. Hydr. Div., ASCE, Vol. 96, No. HY12, pp. 2481-2500.

Fread, D.L. (1971). 'Discussion of implicit flood routing in natural channels
by M. Amein and C. S. Fang', J. Hydr. Div., ASCE, Vol. 97, No. HY7, pp.
1156-1159.

Fread, D.L. (1973). 'Technique for implicit dynamic routing in rivers with
tributaries', Water Resources Research, Vol. 9, No. 4, pp. 918-926.

Fread, D.L. (1974), Numerical Properties of Implicit Four-point Finite
Difference Equations of Unsteady Flow, NOAA Tech. Memo NWS HYDRO-18, U.S.
Department of Commerce, National Weather Service, Silver Spring, Maryland.

Fread, D.L. (1978). 'NWS operational dynamic wave model', in Verification of
Mathematical and Physical Models, Proc. of 26th Annual Hydr. Div. Specialty
Conf., ASCE, College Park, Maryland, pp. 455-464.

Fread, D.L. (1980). 'Capabilities of NWS model to forecast flash floods
caused by dam failures', in Proc., 2nd Conf. on Flash Floods, Atlanta,
Georgia, American Met. Soc., pp. 171-178.

Fread, D.L. and Smith, G.F. (1978). 'Calibration technique for 1-D unsteady
flow models', J. Hydr. Div., ASCE, Vol. 104, No. HY7, pp. 1027-1044.

Lin, J.0. and Soong, H.K. (1979). 'Junction losses in open channel flows',
Water Resources Research, Vol. 15, No. 2, pp. 414-418.

Preissmann, A. (1961). 'Propagation of translatory waves in channels and
rivers', in Proc., First Congress of French Assoc. for Computation,
Grenoble, France, pp. 433-442.




Saint-Venant, B. De. (1871). 'Theory of unsteady water flow, with application
to river floods and to propagation of tides in river channels', Computes

rendus, Vol. 73, Acad. Sci., Paris, pp. 148-154, 237-240. (Translated into
English by U.S. Corps of Engineers, No. 49-g, Waterways Experiment Stationm,

Vicksburg, Missippi, 1949.)



